
Representation Error in Ocean Data Assimilation

R. N. Miller1,3, D. Behringer2 and L. L. Ehret1

1College of Oceanic and Atmospheric Sciences, Oregon State University 2NCEP 3INRIA Rhône-Alpes

Abstract

•Data assimilation works by using model-data misfits to correct the model state of the
system

•The causes of some of the observed variability are not reflected in the model, and that
portion of the observed variability cannot be usefully assimilated

•We propose a method for constructing statistical error estimates that account for repre-
sentation error explicitly

•We describe the results of our first implementation of our methods within the framework
of the operational climate forecast system.

Representation Error

•The model-data misfit yo
−Hxf contains all the information we have about model errors

yo
− Hxf = (yo

− yt) + (yt
− Hxt) +

H(xt
− xf )

= ǫo + ǫR + Hǫf

• ǫo, ǫR, and Hǫf are the instrument error, the representation error and the forecast

error mapped into observation space

•Only Hǫf contains information that can be usefully assimilated. The other components
must be treated as noise

•We characterize ǫf in terms of the significant EOFs of a long run of the model. Significance
is determined by the Preisendorfer test. The model space X is the span of the significant
EOFs.

• ǫo and ǫR make up the orthogonal complement, in observation space, of HX.

•The Preisendorfer test is used to distinguish ǫR from ǫo. This amounts to a scale assump-
tion.

Representation Error EOFs

Figure 1: Lead EOFs of Representation Error

Example: MOM4 and SST Observations

• MOM4 on a 1/2o horizontal grid (finer in the tropics) 40 levels in the vertical

• Data: Gridded SST analyses based on satellite observations, assimilated every 5 days

• ENSO is the strongest interannual signal in the model and observed SST.

• In the new scheme, only that part of the misfit that lies in HX participates in the assim-
ilation process

Comparison New Scheme vs. Original

Assimilation Cycles for the Kuroshio, 6/25/03 - 6/30/03
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Figure 2: Original Scheme
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Figure 3: New scheme

Top to bottom: 6/25/2003, background, increment analysis; 6/30/2003 background, incre-
ment, analysis

Lead Misfit EOFs, New Assimilation Scheme
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EOFs of model-data misfit for forecast (left) and analysis (right).

• Both show seasonal pattern. Principal components are dominated by annual signal.

• Analysis shows finer scale features, as expected.

• Representation error accounts for a greater proportion of analysis misfit than it does for
forecast misfit.

Discussion

• The new scheme works as designed, i.e., misfits from representation error do not participate
in the assimilation process

• In practice, with a 5 day assimilation cycle, large scale spatial patterns appear in the misfits
in both the old and new schemes, with temporal variability dominated by annual cycle.
This suggests two possibilities

– Systematic seasonal bias in the surface forcing

– Inefficiency in the assimilation scheme

• The estimated representation error also has significant seasonal cycle, arising from seasonal
cycle in the un-modeled phenomena.

• Useful ensembles consisting of model output + simulated representation error will have to
account for seasonal cycle, even with a more efficient assimilation scheme and improved
surface forcing
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